\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name : Operation Research

Subject Code : 5CS03WOR1
Branch :M.Sc.I.T. (WebTech)
Semester : 3
Date :26/03/2018
Time :02:30 To 05:30
Marks : 70

Instructions:
(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1

Attempt the Following questions

a. Define : OR
b. Define : Feasible solution
c. Enlist transportation methods.
d. Decision variables are \qquad
e. List out phases of project management.
f. Define ; merge event.
g. Define : dummy activity.

Q-2

Attempt all questions

a. Explain features of OR approach.
b. Use Vogel's approximation method in order to find the initial basic feasible solution to the following transportation problem.

	D1	D2	D3	D4	Supply
S1	2	3	11	7	6
S2	1	0	6	1	10
S3	5	8	15	9	10
Demand	7	5	3 OR	2	

Attempt all questions
a. Use NWCM approximation method in order to find the initial basic

feasible solution to the following transportation problem.

	D1	D2	D3	D4	Supply
S1	1	2	1	4	30
S2	3	3	2	1	50
S3	4	2	5	9	20
Demand	20	40	30	10	

b. Use graphical method to solve the following LP problem. maximize $\mathrm{z}=15 \mathrm{x} 1+10 \mathrm{x} 2$

Subject to constraints, $\quad 4 \times 1+6 \times 2=360,3 \times 1 \leq 180,5 \times 2 \leq 200, \times 1, \times 2 \geq 0$
Q-3
a. Explain OR models.
b. Use LCM in order to find the initial basic feasible solution to the following transportation problem.

| | D1 | D2 | D3 | D4 | Supply |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 | 6 | 3 | 5 | 4 | 22 |
| S2 | 5 | 9 | 2 | 7 | 15 |
| S3 | 5 | 7 | 8 | 6 | 8 |
| Demand | 7 | 12 | 17 | 9 | |

a. Explain advantages and disadvantages of Linear Programming.
b. Use the simplex method to solve the following LP problem.

MAX Z= 3X1+2X2
Subject to the constraints,
$-\mathrm{X} 1+2 \mathrm{X} 2 \leq 4, \quad 3 \mathrm{X} 1+2 \mathrm{X} 2 \leq 14, \quad \mathrm{X} 1-\mathrm{X} 2 \leq 3$,
$\mathrm{X} 1, \mathrm{X} 2 \geq 0$

SECTION - II

Attempt the Following questions
a. Who has developed simplex method ?
b. Define : Linear programming.
c. Which are the types of events ?

d. Which are the methods of graphical solutions?
e. Define : unbound solution.
f. Least cost method is also known as \qquad
g. PERT stands for \qquad
a. Draw a network diagram for the following activities .

Activity	Predecessor
A	-
B	A
C	A
D	B
E	B,C
F	E
G	D,F
H	G

b. Explain Special cases in linear programming with diagram.

OR

Attempt all Questions

a. A department of a company has five employees with five jobs to be performed. The time (in hours) that each man takes to perform each job is given in the effectiveness matrix.

$\frac{20}{0}$	Employees					
		1	II	III	IV	V
	A	10	5	13	15	16
	B	3	9	18	13	6
	C	10	7	2	2	2
	D	7	11	9	7	12
	E	7	9	10	4	12

How should jobs be allocated one per employee, so as to minimize the total man hours.
b. A salesman has to visit five cities A, B, C, D, and E. The distance (in kms.) between the five cities are as follows :

	To city						
		A	B	C	D	E	
	A	-	$\mathbf{1}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{4}$	
	B	7	-	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{6}$	
	C	$\mathbf{6}$	$\mathbf{8}$	-	$\mathbf{9}$	$\mathbf{8}$	
	D	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{9}$	-	-	

If the salesman starts from city A and has to come back to city, which route should be select so that the total distance travelled is minimum ?

